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Fig. 1. The user interface. At left: the node-link diagram, here with nodes positioned according to an attribute-driven layout, i.e.,
adopting their corresponding positions within a degree × s-mean scatterplot. Top middle: the FlowVizMenu is popped up and
contains the same scatterplot. Fluid gestures within the menu select dimensions to drive the attribute-driven layout with smoothly
animated transitions. At right: the P-SPLOM, here showing a SPLOM of the nodes’ metrics.

Abstract—A standard approach for visualizing multivariate networks is to use one or more multidimensional views (for example,
scatterplots) for selecting nodes by various metrics, possibly coordinated with a node-link view of the network. In this paper, we
present three novel approaches for achieving a tighter integration of these views through hybrid techniques for multidimensional
visualization, graph selection and layout. First, we present the FlowVizMenu, a radial menu containing a scatterplot that can be popped
up transiently and manipulated with rapid, fluid gestures to select and modify the axes of its scatterplot. Second, the FlowVizMenu
can be used to steer an attribute-driven layout of the network, causing certain nodes of a node-link diagram to move toward their
corresponding positions in a scatterplot while others can be positioned manually or by force-directed layout. Third, we describe a
novel hybrid approach that combines a scatterplot matrix (SPLOM) and parallel coordinates called the Parallel Scatterplot Matrix (P-
SPLOM), which can be used to visualize and select features within the network. We also describe a novel arrangement of scatterplots
called the Scatterplot Staircase (SPLOS) that requires less space than a traditional scatterplot matrix. Initial user feedback is reported.

Index Terms—Interactive graph drawing, network layout, attribute-driven layout, parallel coordinates, scatterplot matrix, radial menu.
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The most common approach for visualizing a network is a node-link
diagram, for which there are many layout algorithms [11]. Unfortu-
nately, some networks are so complicated that it may be impossible
to give them a layout that makes the most important nodes, their con-
nections, and their immediate neighbors clearly visible. For example,
in our own work with biological networks, we often have individual
nodes with over 300 neighbors; just laying out these neighbors in a
clear way is challenging. In addition, a single, automatically gener-
ated layout may not be appropriate for all situations, leading to users
often manually adjusting and repositioning certain nodes in the node-
link diagram. When the nodes of interest to the user are not immedi-
ately visible, some indirect means of searching and selecting them is
required. For example, a spreadsheet interface (such as that in [5, 4])
might list all nodes and allow them to be sorted by name, degree, clus-
tering coefficient, etc. and selected. Another possibility is to have a
scatterplot, of clustering coefficient versus degree for example, within



which the user may select nodes [9].

Taking this idea further, for any given network, we could compute
various metrics associated with each node (such as degree, cluster-
ing coefficient, betweenness centrality, etc.) and we may also have
various attributes associated with each node (protein name, biological
function, cellular localization, etc.) Such multidimensional data mo-
tivates the use of standard multidimensional visualization techniques,
in particular: scatterplot matrices (SPLOMs) [18] and parallel coordi-
nate plots (PCPs) [12, 20, 35]. Recent research by Bezerianos et al.
[4] takes such an approach, using a SPLOM to visualize a multivariate
graph. In their system, the SPLOM serves as a kind of overview of
the data, and is coordinated with a single zoomed-in scatterplot that
serves as the focus. Links between nodes are drawn on top of the scat-
terplot to reveal the graph’s structure. A ScatterDice-style interface
[13] allows for transitions of dimensions through 3D rotation.

Our work further explores the design space of network visual-
izations that incorporate multidimensional visualization techniques.
We have developed a novel combination of a node-link diagram, a
SPLOM, and PCPs (Figures 1 and 2). The layout of our node-link di-
agram can be modified manually, or through force-directed layout, or
attribute-driven layout, or a mixture of these. Our SPLOM and PCPs
are combined into a Parallel Scatterplot Matrix (P-SPLOM) that af-
fords fluid transition between scatterplots, 3D PCPs, and normal (2D)
PCPs using 3D rotation. We also present a novel popup widget that
enables rapid, fluid gestures to select within scatterplots and modify
the layout of the node-link diagram. Together, these techniques pro-
vide a greater variety, and a tighter integration, of visualizations of the
network than has been previously possible.

Fig. 2. Selecting (in red) and brushing (in yellow) within the FlowViz-
Menu’s scatterplot shows linking with the node-link diagram. Along the
bottom of this screenshot, the P-SPLOM has been converted to a single
row PCP, and selected nodes are shown as red polylines.

Our contributions are (1) a novel popup widget for manipulating
multidimensional visualizations called the FlowVizMenu; (2) a tech-
nique for mixing attribute-driven layout with force-directed and man-
ual layout of nodes within a node-link diagram; (3) a novel integra-
tion of SPLOMs, PCPs, and 3D PCPs called the P-SPLOM; (4) an
investigation of the tradeoffs of different orderings of the axes within
a P-SPLOM; and (5) a novel arrangement of scatterplots called the
Scatterplot Staircase (SPLOS). We also report initial user feedback.

2 RELATED WORK

Recent work on multivariate graph visualization includes [34, 2, 4].
Of these, the most similar to our current work is GraphDice [4], in
which there are two main views: the SPLOM, and a single zoomed-in
scatterplot. The nodes in the scatterplot are always positioned accord-
ing to the selected dimensions, such as degree, centrality, etc. — this
could be called attribute-driven layout. Two special dimensions are
the x and y positions of the nodes in a force-directed layout. Selecting
these x and y positions as the dimensions for the scatterplot results in a
“scatterplot” showing the force-directed layout of the graph. Our work
differs from GraphDice in several respects: we allow mixing of man-
ual, force-directed, and attribute-driven layout; we allow the SPLOM
to be rearranged in many different ways, as discussed in Section 6;
our SPLOM can also be rotated in 3D to yield 3D parallel coordinate
plots (PCPs) or normal (2D) PCPs. Our FlowVizMenu also differs
from the ControlMenu used in [4] to rotate dimensions, as discussed
in Section 4.

Our system uses parallel coordinate plots (PCPs) [20, 35]. 3D vari-
ants of PCPs have been proposed before, including [15, 21], and, most
relevant to our work, [14, 28]. The “Cube” of [14], and 3D parallel
coordinates of [28], are both essentially sequences of parallel planes,
with each plane containing a scatterplot. This can be equated with
taking normal 2D PCPs and replacing each axis with a scatterplot on
a plane. The links connecting corresponding points on consecutive
planes could be compared to the links between planes in VisLink [10].
We will refer to this 3D variant of PCPs as simply 3D PCPs. The P-
SPLOM we present in this work is a novel unification of SPLOMs,
PCPs, and 3D PCPs, achieved through a simple 3D rotation of the
scatterplots.

Hybrid multidimensional visualizations have also been proposed
before, including combinations of PCPs and scatterplots [27, 39, 30,
19] (see also [38] for a similar idea) and parallel coordinates displayed
within a matrix [1]. Our P-SPLOM contributes one additional hybrid
multidimensional visualization, with tradeoffs compared to previous
work. For example, the scatterplot-PCP hybrid of [19] displays both
the points of scatterplots and the polylines of a PCP at the same time,
but at an increased cost in screen space. On the other hand, our P-
SPLOM allows users to only view scatterplots, or only view a PCP, or
view a 3D PCP showing both the points within each (partially rotated)
scatterplot and the polylines of the PCP.

3 METRICS USED

In principle, any number of attributes (protein name, biological func-
tion, cellular localization, etc.) associated with the nodes could be
used as dimensions in our system. Our system does not require the
network to have any attributes, however, as several metrics are defined
and computed for each node from the network structure itself. These
include index: a unique integer identifying the node (although this
dimension often has little meaning, its use within a scatterplot can help
de-occlude points to reveal a distribution); degree: the number of
neighbors of the node; between, close, eigen: the betweenness,
closeness, and eigenvector centralities, respectively1; cluster: the
clustering coefficient; core: the shell associated with the k-core de-
composition of the network [37]; s-mean and s-sdev: the average
and standard deviation, respectively, of the strength (as defined in [3])
of the edges adjacent on the node.

4 THE FLOWVIZMENU

The human-computer interaction (HCI) community has proposed sev-
eral popup widgets that afford a gestural style of interaction [8, 22, 26,
17, 23], some of which have been applied to interactive visualization
[25]. Popup widgets have several advantages: they require no screen
space when not in use; they eliminate the need to travel back and forth
between a work area and menu bars or panels of widgets located in
the periphery; and they can also be invoked by holding down a but-
ton, keyboard key, or stylus tip, resulting in kinesthetic feedback that

1http://en.wikipedia.org/wiki/Centrality



helps avoid mode errors [29] and helps to integrate the selection of
arguments into a single phrase or gesture [7].

The FlowVizMenu2 is a novel popup widget that contains a multidi-
mensional visualization, and allows dimensions to be selected through
outward and inward motions. Figure 3 shows the variant we imple-
mented, which displays a single scatterplot at a time. The menu is
popped up with a keyboard key, after which the pointing device may
brush over the scatterplot (Figure 2). The user may also select di-
mensions for the scatterplot by stroking outward or inward, for x and
y respectively. This allows the user to quickly switch between, and
compare, scatterplots. The outward-inward motions were inspired by
those in the original FlowMenu [17]. These quick, continuous gestures
have been found to yield good selection performance [16]. When the
pointer crosses over the name of a dimension, a smooth transition oc-
curs, showing the new dimension rotate into the old dimension’s place.
The FlowVizMenu’s rotation transition is similar to that in [13, 4] ex-
cept that we use an orthographic projection instead of a perspective
projection, to maintain the position of the points along the unchanging
axis. Furthermore, when the pointer crosses over the name of a dimen-
sion, the user may “scrub” to control the progression of the transition.
This scrubbing functionality is comparable to the way a Control Menu
[26] works, in that it uses the mouse drag to control a continuous pa-
rameter. Thus, the FlowVizMenu can be seen as a hybrid between
a FlowMenu and a Control Menu that furthermore incorporates a vi-
sualization. Teoh et al. [31] also proposed a radial layout of small
visualizations to be used for navigation, however their radial layout is
not within a popup widget.

Fig. 3. Our implemented FlowVizMenu. Left: the cluster × close

scatterplot was selected by stroking outward through the dimension for
the horizontal axis and then inward through the dimension for the verti-
cal axis. As the user strokes over the dimension names (dashed parts
of the red arrow), the scatterplot rotates away from the previously se-
lected axis and towards the new one. The user may “scrub” over the
dimension name to slow down or replay this rotation. Right: Drawing a
figure-8 gesture allows the user to rotate between two different scatter-
plots, in this case toggling between s-sdev and eigen on the vertical
axis while maintaining close on the horizontal axis. This allows for
comparison of the two scatterplots within a relatively small space.

We can also compare our implemented FlowVizMenu with the con-
trol menu used in GraphDice [4]. Both are used to transition between
dimensions in a scatterplot, and both allow for scrubbing. However,
because GraphDice’s control menu only makes use of outward mo-
tions, it contains 2 copies of every dimension: one for the scatterplot’s
horizontal axis, and another for the vertical axis. Furthermore, the
menu items in GraphDice’s control menu only cover half a circle. The
end result is that the dimensions in our FlowVizMenu each cover an
angle that is four times larger, enabling easier and faster selection. Our
FlowVizMenu also differs in that it contains a visualization, whereas
GraphDice’s control menu is used to control an underlying visualiza-
tion. As shown in Figure 2, this means the user can perform brush-
ing and linking for coordination with other views without leaving the

2We initially considered calling this widget the MatchWheel, because

MatchWheel + HotBox form a chiasm with MatchBox + HotWheel, two well

known toy car brands.

FlowVizMenu.

In our FlowVizMenu, each repeated outward-inward motion will
normally replace the two dimensions in the scatterplot with new di-
mensions. Hence, a repeated figure-8 motion (Figure 3, right) cycles
between two scatterplots. However, it also occurred to us that repeated
outward-inward motion could be useful for accumulating dimensions.
In our implementation, holding down the shift key during motions
causes the dimensions to be accumulated along the axes using prin-
ciple component analysis (PCA). For example, holding down Shift,
and moving out through dimension A, in through B, out through C,
and in through D, will cause the system to compute a PCA projection
from A × C to the horizontal axis, and a separate PCA projection from
B × D to the vertical axis.

Another way that dimensions could be “accumulated” during re-
peated motions is in building up a PCP. We designed (but did not im-
plement) this idea, as shown in Figure 4, where the accumulated di-
mensions result in a 1D histogram, then a 2D scatterplot, then a 3- (or
more) axis PCP. Yet another design (also not implemented) is shown
in Figure 5.

Fig. 4. Mock-up of alternative design: selecting a single dimension
causes a histogram to be displayed (Left), selecting a second dimen-
sion causes a scatterplot to be displayed (Middle), selecting additional
dimensions transitions to a parallel coordinate plot (Right).

Fig. 5. Mock-up of a 2nd alternative design: Here, rather than “contain-
ing” a visualization, the FlowVizMenu is used to build up a visualization
underneath, depositing or editing each piece of the visualization. Left:
the FlowVizMenu is popped up over each cell of a matrix of scatterplots
to choose the desired axes. Right: the FlowVizMenu is used to choose
the axes within a parallel coordinate plot.

We hypothesized that because our implemented FlowVizMenu con-
tains only a single scatterplot, it might be usable on a device with a
small screen, and useful even without any additional views of the data.
We have prototyped a FlowVizMenu with JavaScript that can be used
on Apple’s iPhone and iPod touch devices (Figure 6). The size of the
menu items and the surrounding space were chosen to reduce finger
occlusion and to be able to move around the menu and scrub with
ease. Such a widget might be combined with functionality in [6] for
zooming in on the scatterplot.

In addition to the FlowVizMenu, users can also pop up a hotbox
[25] to manually reposition nodes or manipulate the node-link diagram
of the network.

5 ATTRIBUTE-DRIVEN LAYOUT

As already seen, the FlowVizMenu can be used to brush or select
nodes that have, for example, both low degree but high betweenness
centrality (such nodes could correspond to “bridges” in the network).



Fig. 6. Implemented version of the FlowVizMenu for iPhone/iPod touch
platform. The dimensions within a single scatterplot can be transitioned
with gestures.

Such functionality is useful when the node-link diagram is so dense
that it is difficult to see individual nodes.

This section shows how the FlowVizMenu can also be used to drive
an Attribute-Driven Layout (ADL) of the node-link diagram, or of a
subset of nodes in the node-link diagram. For this, the user first acti-
vates the ADL scatterplot, which is displayed as a square region in the
node-link diagram (see left sides of Figures 1 and 7). Then, when the
user pops up the FlowVizMenu and selects two axes, the ADL scatter-
plot displays red and blue dots showing the corresponding scatterplot
positions of selected and unselected nodes, respectively. Any nodes in
the node-link diagram that have not been previously locked in place by
the user are then animated to lie under their corresponding dots. The
user may then select new axes within the FlowVizMenu, causing the
positions of the red and blue dots to update immediately, after which
the (unlocked) nodes again animate to their new positions under the
dots. The use of smoothly animated transitions makes it easier to fol-
low the trajectories of nodes and observe the behavior of groups of
nodes during transitions.

As mentioned, with ADL, each unselected node is shown in black,
and its corresponding position in the ADL scatterplot is shown with
a blue dot. If the node is locked in some position different from the
blue dot’s position, the blue dot is easy to distinguish against the white
background. However, if the node is not locked, then at the end of the
animated transition the node moves under the blue dot, which then be-
comes difficult to see against the black background of the node. This
was an intentional design choice, because the blue dot is almost redun-
dant in that case. The red dots for selected nodes, however, are always
visible, enhancing the visibility of selected nodes.

In between invocations of the FlowVizMenu, the user may also
manually reposition nodes, lock or unlock certain nodes, and repo-
sition unlocked nodes using force-directed layout. Because ADL only
affects unlocked nodes, the user may freely mix manual layout, force-
directed layout, and ADL. The result is a hybrid visualization that
leverages the fact that scatterplots show two dimensions at once, while
also allowing the user to see the edges (drawn as straight line seg-
ments) within the graph, and also mix in force-directed or manually
repositioned nodes as desired. An alternative approach, where the user
has two separate views (one of the node-link diagram and one scatter-
plot view), requires more screen space and could require more effort
to mentally integrate the two views.

Nevertheless, the user may still sometimes prefer to deactivate the
ADL scatterplot, so that they can keep the force-directed node-link
diagram separate from, say, the 2D scatterplot in the FlowVizMenu
(which allows for brushing and linking with the node-link diagram).
The user is free to choose the approach best suited to their needs.

6 SCATTERPLOT MATRICES (SPLOMS)

The FlowVizMenu only displays a single scatterplot at a time, which
can be useful for saving screen space. The user can also transition
between different scatterplots within the FlowVizMenu with fast ges-
tures. However, at times the user may want a more global view of

Fig. 7. A mixture of attribute-driven layout, force-directed layout, and
manual layout. At right, four nodes were positioned manually and locked
in place. Next, several of their neighbours (also shown at right) were po-
sitioned with force-directed layout and then locked in place. The remain-
ing nodes, which were not locked by the user, are positioned according
to the ADL scatterplot (left) being manipulated via the FlowVizMenu.

the data, and wish to compare several scatterplots simultaneously. For
this, we use a scatterplot matrix (SPLOM).

The SPLOM and node-link diagram in our system can be zoomed
and panned independently, and the FlowVizMenu’s corresponding
scatterplot is highlighted in the SPLOM. Brushing and linking can be
performed between points in the SPLOM and nodes in the node-link
diagram. Furthermore, the user can reduce the SPLOM to a single row
of scatterplots, or even a single scatterplot, that can then be zoomed in
to a larger size.

Our SPLOM can be ordered in the standard format shown in Fig-
ure 8 where each row contains only one kind of vertical axis, and each
column contains only one kind of horizontal axis. Naturally, this sim-
plifies comparison of scatterplots within the same row or column. Cer-
tain systems, such as [13], allow the rows and columns of a SPLOM
to be reordered, for added flexibility, while still maintaining a single
vertical axis within each row and a single horizontal axis within each
column. Our system dispenses with this constraint, allowing other
arrangements to be investigated. For example, the user may not be
interested in comparing scatterplots with a common axis, or in seeing
all possible scatterplots. Thus, we developed variants of the standard
SPLOM, with different orderings of scatterplots or of their axes, which
we now describe.

6.1 Ranked Scatterplot Matrix

Our first variant of the SPLOM orders scatterplots according to some
ranking or metric of interest. Currently, our implementation of the
ranked SPLOM orders scatterplots in descending order of the absolute
value of their Pearson correlation coefficient, filling the first row from
left-to-right, then the 2nd row, etc. This allows the user to see the
scatterplots showing the strongest correlations at the top left of the
matrix. It would also be possible to rank scatterplots according to any
of the metrics listed in [36], or with the “quality-measures” in [1],
or even allow the user to define their own “ranking” by dragging and
dropping scatterplots to insert them at any position in the matrix.

6.2 Scatterplot Staircase (SPLOS)

This variant, which we call the Scatterplot Staircase or SPLOS (Fig-
ures 9A and 9C), shows only the scatterplots of consecutive pairs of
dimensions, arranged in a staircase pattern, such that adjacent scat-
terplots share an axis along their common edge. To our knowledge,
this staircase pattern of scatterplots is novel, but we note that it was
inspired by quilts [33] (which use a staircase of adjacency matrices)



Fig. 8. A standard SPLOM (scatterplot matrix).

and also by an arrangement of adjacent scatterplots sharing axes on
page 135 of [32]. Notice that the scatterplots involved in the SPLOS
are located adjacent to the diagonal in the standard SPLOM. If the N
dimensions in the data set are x1,x2, . . . ,xN , then the N−1 scatterplots
in the staircase are x2 ×x1,x2 ×x3,x4 ×x3,x4 ×x5, . . . The entire stair-
case pattern is ⌊N/2⌋ columns wide and ⌈N/2⌉ rows tall. Although
not implemented, it would be possible to rotate the staircase 45 de-
grees (Figures 9D, 10C) to take up less screen space. If each axis has
length L, we can compare the space efficiency of the SPLOS, rotated
SPLOS, and other multidimensional visualization techniques:

Area Required
Aspect
Ratio

Standard SPLOM
(N −1)L× (N −1)L = Θ(N2L2) 1

(lower triangular half only)

Single Row of Scatterplots
NL×L = NL2 N

(e.g., Figures 10A, 10B, 11A)

Scatterplot Staircase (SPLOS) ⌊N/2⌋L×⌈N/2⌉L = Θ( 1
4 N2L2) Θ(1)

(e.g., Figures 9A, 9C)

Scatterplot Staircase (SPLOS)
1√
2

NL× 3√
2

L = 3
2 NL2 1

3 Nrotated 45◦

(e.g., Figures 9D, 10C)

Parallel Coordinate Plot (PCP)
(N −1)kL×L = Θ(kNL2) Θ(kN)

(e.g., Figures 10D, 11D)

where the Parallel Coordinate Plot (PCP) is assumed to have spacing
between axes that is proportional to L (i.e., the spacing is kL, for some
constant k), to prevent the slopes of line segments from becoming too
extreme.

From the comparison, we see that the area required by the SPLOS
is about 1/4 that required by a standard SPLOM. This means the user
can have an overview of data that takes up less screen space, or that
can be enlarged to take up the same space as a standard SPLOM but
with each scatterplot 4 times larger. The area required by the rotated

SPLOS is even smaller at 3
2 NL2 (i.e., linear in N, and comparable to

PCP). Comparing the rotated SPLOS with a single row of scatterplots,
the rotated SPLOS requires 50% more area but has an aspect ratio that
is 3 times closer to 1 (which may be advantageous in certain contexts)
and also has the advantage that each dimension in the SPLOS lies on
an axis shared by two scatterplots, easing comparisons. Note that the
scatterplots used in the SPLOS are the same as those embedded in
PCPs in [19], but with the advantage that pairs of scatterplots with
a common axis are adjacent and aligned, again easing comparisons.

Fig. 9. A: a SPLOS of 4 scatterplots, for the same dataset and same 5
dimensions as in Figure 8. B and C: a standard SPLOM (B) of 7 dimen-
sions, and the corresponding SPLOS (C) for the same 7 dimensions but
composed of only 6 scatterplots. D: If there are N dimensions, and the
N−1 scatterplots have axes of length L, and the staircase is rotated 45◦

counterclockwise, the area of the bounding rectangle is linear in N.

Fig. 10. Four visualizations of the same 7-dimensional network data.
A: a single row of scatterplots from a standard SPLOM. Notice that one
dimension (index) is crossed with all other dimensions. B: another
row of scatterplots, now where each scatterplot involves 2 consecutive
dimensions. C: a Scatterplot Staircase (SPLOS) rotated 45 degrees.
Each adjacent pair of scatterplots share an axis. D: parallel coordinates
plot (PCP). The SPLOS is scaled and positioned such that, for each
axis shared by two scatterplots in the SPLOS, the midpoint of the axis
is aligned with the corresponding axis of the PCP.

Finally, given the perceptual advantages of scatterplots over parallel
coordinates [24], we feel the SPLOS is an interesting compromise be-
tween the standard SPLOM and PCPs.



6.3 Parallel Scatterplot Matrix (P-SPLOM)

Our system allows the scatterplots within a SPLOM to be rotated in 3D
around either their vertical or horizontal axis. Figure 11 illustrates this
for a single row of a SPLOM. Figures 11A through 11D show how
a rotation around the vertical axes causes the visualization to transi-
tion from a sequence of scatterplots to a PCP. In between these two
extremes, the user may rotate around both the vertical and horizon-
tal axes (Figures 11E, F) yielding a 3D parallel coordinate plot (3D
PCP) similar to those in [14, 28]. Although this is done for a single
row of the SPLOM in Figure 11, such rotation is also allowed within
the full matrix (Figures 12, 13). Because these visualizations com-
bine SPLOMs, PCPs, and 3D PCPs with seamless transitions, we call
this combination based on rotation a Parallel Scatterplot Matrix (P-
SPLOM).

Fig. 11. A single row of a P-SPLOM. A: a single row of scatterplots, with
two points selected and highlighted in red. B-C: as the scatterplots are
rotated around their vertical axes, links (in grey) between corresponding
points are faded in. D: after rotating 90 degrees, the result is a Paral-
lel Coordinate Plot (PCP). E: during rotation, the user may also rotate
around the horizontal axes, resulting in a 3D PCP. F: an alternate or-
dering of axes for 3D PCP, facilitating comparison between consecutive
pairs of scatterplots.

Several orderings of the axes are possible within P-SPLOMs. For
illustration purposes, consider first the axes within a standard SPLOM
(Figure 8). If there are five dimensions named A, B, C, D, and E, we
could specify the axes within the standard SPLOM with the following
table:

Fig. 12. Rotation of scatterplots within a P-SPLOM is possible along the
horizontal and vertical axes simultaneously. Here, the user has rotated
the scatterplots approximately 90 degrees around the horizontal axes,
and 45 degrees around the vertical axes. Links between corresponding
points are shown in grey. Each row and each column of this matrix could
be further rotated into a PCP.

Standard SPLOM
horizontal axes vertical axes

A B C D E A A A A A
A B C D E B B B B B
A B C D E C C C C C
A B C D E D D D D D
A B C D E E E E E E

If the above ordering of axes is used within a P-SPLOM, the PCPs
that result after rotation are not useful, because each row and each col-
umn will contain the same PCP axis repeated five times (see Figure 13,
top row). Thus, our system also allows an ordering of axes that we call
Doubly-Latin, because it involves two Latin squares:

Doubly-Latin SPLOM
horizontal axes vertical axes

E D C B A A B C D E
A E D C B B C D E A
B A E D C C D E A B
C B A E D D E A B C
D C B A E E A B C D

An example of this ordering is in Figure 13 (2nd row). The Doubly-
Latin ordering is useful for transitioning to PCPs because every row
contains each kind of vertical axis once, and every column contains
each kind of horizontal axis once. Thus, if the user focuses on any
single row or column and rotates toward a PCP, all dimensions will
be visible after the rotation within that one row or column. Figure 12
shows the full matrix for a Doubly-Latin P-SPLOM during rotation.
Each column and each row of this figure is a 3D PCP that would (af-
ter complete rotation) contain all axes. As a side note, if the number
of dimensions is odd, the Doubly-Latin ordering results in an Euler
square (also known as a Graeco-Latin square), which has the property
that every possibly pair of dimensions occurs once. This is useful be-
fore rotating toward PCPs, since it guarantees all possible scatterplots
will be visible in the full matrix. In other words, the Euler square is a
permutation of the scatterplots in the standard SPLOM.

At the same time, the Doubly-Latin ordering has the disadvantage
that within any given row or column, there can be redundant scatter-
plots. For example, within the Doubly-Latin matrix shown in Fig-
ure 13, the first row of scatterplots is E×A, D×B, C×C, B×D, A×E;
i.e., the last two scatterplots are transpositions of the first two. The
same redundancy is seen in the Doubly-Latin scatterplots in Figure 14.



Fig. 13. Each row shows a different ordering of the dimensions within
the P-SPLOM. The left column shows the full scatterplot matrix (without
rotation), the middle column shows the PCP resulting after a 90 degree
rotation around the y axes, and the right column shows the PCP result-
ing after a 90 degree rotation around the x axes.

This redundancy does not matter after a full rotation toward PCPs, but
is does make the Doubly-Latin ordering less attractive for use with
3D PCPs of a single row or column. Thus, our system also allows
for what we call a Singly-Latin ordering, because it only involves one
Latin square:

Singly-Latin SPLOM
horizontal axes vertical axes

B C D E A A B C D E
B C D E A E A B C D
B C D E A D E A B C
B C D E A C D E A B
B C D E A B C D E A

The above Singly-Latin ordering has the advantage that within any
given row (but not column), we find each vertical axis once (making it
good for rotation toward PCP) and each horizontal axis once. Further-
more, within any given row, there are no redundant scatterplots, mak-
ing the ordering reasonable for 3D PCPs. For example, Figures 11A
through 11E show the first row of the Singly-Latin P-SPLOM whose
ordering is given above. Notice the pattern of pairs of dimensions in
the 1st row: B×A,C×B,D×C, . . . (i.e., the x axis of one is the y axis
of the next). The same pattern is seen in Figure 10B.

There is, however, still a minor disadvantage of the Singly-Latin or-
dering for 3D PCPs: within the 1st row, each pair of consecutive scat-
terplots share a dimension on different axes, making comparisons more

Fig. 14. Each row shows a different ordering of the dimensions within
a single row of scatterplots. The left column shows the scatterplots
without rotation, the middle column shows the 3D PCP resulting after a
partial rotation, and the right column shows the PCP resulting after a 90
degree rotation around the y axes.

difficult. For example, in Figure 11E, the left-most scatterplot has
degree on its horizontal axis, and the next scatterplot has degree
on its vertical axis. Thus, our system also supports an Interlaced
Singly-Latin ordering, which results from taking the Singly-Latin or-
dering and swapping the axes of scatterplots in every other column.
The first row of an Interlaced Singly-Latin P-SPLOM is shown in Fig-
ure 11F. Notice now that degree is the horizontal axis of the 1st and
2nd scatterplots, and cluster is the vertical axis of the 2nd and 3rd
scatterplots, etc. Notice also that the scatterplots in Figure 11F are the
same as in the staircase pattern of Figure 9A! This ordering facilitates
comparisons across the scatterplots when using the 3D PCP.

The following table summarizes the tradeoffs between the different
orderings for P-SPLOMs:

full single single single
scatterplot row of row row

matrix scatterplots 3D PCP PCP
(not (not (partially (fully

rotated) rotated) rotated) rotated)
Fig. 13 Fig. 14 Fig. 14 Fig. 14

Standard best good good worst

Doubly-Latin
redundant

redundant redundant best
if N even

Singly-Latin good good good best

Interlaced
good good best redundant

Singly-Latin

The user may switch between all these orderings at run time, trig-
gering a smoothly animated transition from the old ordering to the new
ordering. The user may also switch between viewing the full matrix or
focus on a single row, and may also transition between “flat” scatter-
plots to 3D PCP or PCP through rotation (Figure 11). Thus, the user
is free to choose the visualization that best suits their needs. Never-
theless, the above table indicates that the Singly-Latin ordering may
be the best compromise across all the views of the data, since it is the
only one that avoids redundancy in all cases.

7 INITIAL USER FEEDBACK

We asked five bioinformaticians (four men and one woman, between
24 and 43 years old) to help us evaluate our system’s user interface
for the exploration of biological networks. All five participants are
experienced computer users and work with network data.

Each participant was given a ten minute demonstration and expla-
nation of the interface, in part to demonstrate some of the possibilities
afforded by metric-based exploration. Next, a set of questions were
asked regarding the potential relevance of metric-based graph explo-
ration for bioinformatics. Participants were then allowed to freely ex-
plore the interface while thinking aloud. A second set of open-ended
questions was then asked regarding the user interface and the partici-
pant’s impressions.



Participants quickly understood the logic behind each interface el-
ement. The effectiveness of the interface for selection was noted in
particular (“it’s a very quick way to pick out interesting outliers”, “it
allows you to swiftly do something that might have taken a lot longer
just manually picking through the graph.”)

Smoothly animated transitions were seen as useful (“The transition
is helpful, because I think if it was just done without transition, then
you would lose sight of [the data]”). Four participants indicated they
had already worked with most of the metrics available in the inter-
face. However, the ability to see these metrics plotted against each
other prompted new questions (“it’s maybe not as intuitive to me what
the correlation between, let’s say, degree and betweenness central-
ity, which I know is quite correlated right, but what’s the meaning
of that?”, “What an outlier would mean there, I’d like to know, to have
a better sense of that.”) All participants saw the potential for making
new kinds of biological queries, even if it was initially unclear what
kind of queries would be best.

One participant stated “It would be cool if there were some sort
of protein, say, that had high degree and low betweenness centrality,
some unexpected relationship.” Upon hearing this, one of us (Jurisica)
pointed out that the opposite would be interesting: a node with high
centrality and low degree would correspond to a node that, if removed,
would disconnect the graph.

All participants stated they would use the interface in their daily
work if it were available to them.

8 EXAMPLE USE WITH REAL-WORLD DATA

To further evaluate our prototype, we tested its use with a real-world
biological network (Figure 15). We wanted to visually explore the net-
work and see how we could make use of the advanced features of the
interface, going beyond simply selecting clusters or high degree nodes
as is possible with status quo software. First, in the P-SPLOM and in
the force-directed layout, we could see that the network was composed
of a few nodes of high degree surrounded by many nodes of degree
one. A preliminary layout was made by combining FlowVizMenu se-
lection with hotbox [25] layout commands. The highest-degree nodes
were selected using the FlowVizMenu, and then laid out in a circular
pattern (and locked in place) using the hotbox. The degree-one neigh-
bors of the highest-degree nodes were then selected and laid out on
a secondary circle (also locked in place) surrounding the first. The
remaining nodes, in the center of these two circles, were structurally
less obvious. To find interesting features in these remaining nodes, we
tried to follow the insight that a node with low degree but high cen-
trality could be a good candidate to investigate. The FlowVizMenu
was used to select these two dimensions and steer the ADL view. One
node stood apart and corresponded to our criteria. A direct selection
in the ADL revealed the name of one particular protein, which our
bioinformatics collaborators intend to further investigate.

9 CONCLUSIONS AND FUTURE DIRECTIONS

We have presented novel approaches to multivariate graph visualiza-
tion that integrate previous techniques, through popup gestural interac-
tion (the FlowVizMenu) and through the use of hybrids (the P-SPLOM
which unifies scatterplot matrices, normal 2D parallel coordinates, and
3D parallel coordinates, with seamless transitions between them; and
our attribute-driven layout which can be mixed with force-directed lay-
out and manual positioning). We have also presented an investigation
of possible orderings of dimensions within P-SPLOMs, and the novel
Scatterplot Staircase (SPLOS). Together, we feel these techniques pro-
vide a flexible toolbox for dissecting a network, isolating nodes of in-
terest, and manipulating the layout. We also note that the P-SPLOM
and SPLOS are general multidimensional visualization techniques that
could be applied to non-network data.

Possible future directions include: deploying the techniques as a
plugin for biological network software such as NAViGaTOR [5] or Cy-
toscape; applying the FlowVizMenu, P-SPLOM and SPLOS to non-
network data; and further adapting the FlowVizMenu or related tech-
niques for use on small screens or mobile platforms.

Fig. 15. Example use of the FlowVizMenu combined with ADL to explore
a biological network. Prior to using the ADL shown here, the highest-
degree nodes and their low-degree neighbors were manually positioned
onto circular layouts. The remaining nodes are laid out with ADL to find
a candidate node with high centrality and low degree, since such prop-
erties could would signify it acts as a bridge, having special biological
significance.

One question that remains open is what value, if any, there is in
displaying a full matrix of parallel coordinates (Figures 12 and 13).
Currently, there is much redundancy in these views due to pairs of axes
being repeated. However, a different ordering of dimensions might
eliminate this redundancy. Otherwise, users may be best to reduce the
matrix to a single row or column before rotating to PCP.

There are also several avenues open for future evaluation. For ex-
ample, how does user performance with our FlowVizMenu compare
to that with GraphDice’s control menu? How accepting are users of
SPLOMs that do not use the standard ordering? These can only be
answered by future work.
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[13] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the dice: Mul-

tidimensional visual exploration using scatterplot matrix navigation.

IEEE Transactions on Visualization and Computer Graphics (TVCG),

14(6):1141–1148, 2008.

[14] G. Falkman. Information visualisation in clinical odontology: multidi-

mensional analysis and interactive data exploration. Artificial Intelligence

in Medicine, 22:133–158, 2001.

[15] E. Fanea, S. Carpendale, and T. Isenberg. An interactive 3D integration of

parallel coordinates and star glyphs. In Proceedings of IEEE Symposium

on Information Visualization (InfoVis), pages 149–156, 2005.

[16] F. Guimbretière. Measuring flowmenu performance. Technical Report

CS-TR-4408, UMIACS-TR-2002-88, HCIL-TR-2002-17, University of

Maryland, January 2003. http://hdl.handle.net/1903/1232.

[17] F. Guimbretière and T. Winograd. FlowMenu: Combining command,

text, and data entry. In Proc. ACM UIST, pages 213–216, 2000.

[18] J. A. Hartigan. Printer graphics for clustering. Journal of Statistical

Computation and Simulation, 4(3):187–213, 1975.

[19] D. Holten and J. J. van Wijk. Evaluation of cluster identification perfor-

mance for different pcp variants. In Proceedings of Eurographics/IEEE-

VGTC Symposium on Visualization (EuroVis), 2010.

[20] A. Inselberg. The plane with parallel coordinates. Visual Computer, 1:69–

91, 1985.

[21] J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing structure

in visualizations of dense 2D and 3D parallel coordinates. Information

Visualization, 5:125–136, 2006.

[22] G. Kurtenbach and W. Buxton. The limits of expert performance using

hierarchic marking menus. In Proc. ACM CHI, pages 482–487, 1993.

[23] G. Kurtenbach, G. Fitzmaurice, R. Owen, and T. Baudel. The Hotbox:

Efficient access to a large number of menu-items. In Proc. ACM CHI,

1999.

[24] J. Li, J.-B. Martens, and J. J. van Wijk. Judging correlation from scatter-

plots and parallel coordinate plots. Information Visualization, 9:13–30,

2010.

[25] M. J. McGuffin and I. Jurisica. Interaction techniques for selecting and

manipulating subgraphs in network visualizations. IEEE Transactions on

Visualization and Computer Graphics (TVCG), 15(6):937–944, 2009.

[26] S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot. Control menus: Ex-

cecution and control in a single interactor. In Extended abstracts of CHI,

2000.

[27] H. Qu, W.-Y. Chan, A. Xu, K.-L. Chung, K.-H. Lau, and P. Guo. Vi-

sual analysis of the air pollution problem in Hong Kong. IEEE Trans-

actions on Visualization and Computer Graphics (TVCG), 13(6):1408–

1415, 2007.
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